Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Mar Environ Res ; 188: 106016, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167835

RESUMO

The release of nanomaterials into the environment is the cause of an emerging concern. Titanium dioxide nanoparticles (nano-TiO2) among the most produced nanomaterials, has been documented in marine coastal areas posing a threat on marine biota. Sea urchin embryos are recognized as suitable bioindicators in ecological risk assessment and recently for nanomaterials. This study investigated the impact of nano-TiO2 on fertilization, embryonic and larval development of the tropical sea urchin Lytechinus variegatus in a range of concentrations (0.005-5 µg/mL) which includes environmentally relevant ones. The behavior of nano-TiO2 in tropical natural seawater was determined by dynamic light scattering (DLS) and toxicity was evaluated through fertilization and embryotoxicity tests, and morphological/morphometric analyses of sea urchin's larvae. Limited toxicity was recorded for nano-TiO2 in tropical sea urchin embryos and larvae, except for effects at the gastrula stage at 0.005 µg/mL. Large agglomerates of nano-TiO2 (5 µg/mL) were observed adhering onto sea urchin larvae thus probably preventing nanoparticles uptake at the highest concentrations (>0.005 µg/mL). Environmental levels of nano-TiO2 are able to cause toxicity on tropical sea urchin L. variegatus embryos with potential consequences on populations and their ecological role in tropical coastal areas.


Assuntos
Lytechinus , Nanopartículas , Animais , Ouriços-do-Mar , Titânio/toxicidade , Nanopartículas/toxicidade , Larva , Fertilização , Desenvolvimento Embrionário
3.
NanoImpact ; 28: 100437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36332901

RESUMO

Plastic pollution represents an emerging environmental issue in terrestrial Antarctica, especially in the Antarctic Peninsula and Maritime Antarctica, which have been recently recognized as hot spots for plastic litter. In these regions, freshwater (FW) environments such as lakes host isolated ecosystems and species that can be severely affected by increasing environmental and anthropogenic stressors, which include plastics that are still overlooked. In this study, we investigated for the first time the impact of nanoplastics on adults of the fairy shrimp Branchinecta gaini (Order Anostraca) populating Antarctic FW ecosystems, using surface charged polystyrene nanoparticles (PS NPs) as a proxy. Short-term acute toxicity (48 h) was investigated by exposing adults to carboxyl (-COOH, 60 nm) and amino-modified (-NH2, 50 nm) PS NPs at 1 and 5 µg mL-1. Biodisposition of PS NPs and lethal and sub-lethal effects (i.e., swimming, moulting, histology, gene expression) were assessed. Behaviour of PS NPs in Antarctic FW media was monitored through 48 h of exposure showing that both PS NPs kept their nanoscale size in the Antarctic FW media. Survival of fairy shrimp adults over short-term exposure was not affected, on the other hand an increase in moulting rate and alterations in the gut epithelium were observed upon exposure to both PS NPs. Significant alterations at the behavioural (ventilation rate) and molecular (up-regulation of Hsp70mit, Hsp83, Sod, P450) levels were related to PS NP surface charge and associated with PS-NH2 exposure only. Nanoplastics could represent a threat for Antarctic FW biodiversity and the Antarctic fairy shrimp could be a valuable model for assessing their impact on such remote and pristine aquatic ecosystems.


Assuntos
Anostraca , Poliestirenos , Animais , Poliestirenos/toxicidade , Ecossistema , Regiões Antárticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...